Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Cureus ; 16(3): e55931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623104

RESUMO

Introduction The disinfection of impressions is crucial to eliminate the viral and other microbial loads to prevent the cross contamination of diseases. The aim of this study was to compare the effect of different virucidal disinfecting methods on the dimensional accuracy and surface detail reproduction (SDR) of impression materials. Methods A total of 160 samples were fabricated with different impression materials using zinc oxide eugenol (Group 1), alginate (Group 2), polyether (Group 3), and addition silicone (Group 4) impression materials, each containing 40 samples (n=40). These groups were further divided into Subgroups A, B, C, and D (n=10) based on the disinfecting method used. Disinfection was carried out using 0.2% peracetic acid (A), a natural polymer of glucosamine (B), ultraviolet (UV) radiation (C), and ozonated water (D). The disinfected impressions were poured in type IV gypsum, and the obtained casts were checked for dimensional accuracy and surface detail reproduction (SDR). For dimensional accuracy, a one-way analysis of variance (ANOVA) test and, for surface detail reproduction, the chi-square test were used to compare the different subgroups of each impression material separately. Results Zinc oxide eugenol samples showed the lowest mean dimensional change when disinfected with 0.2% peracetic acid (1A=154.1 µm), and alginate showed the lowest mean dimensional change when disinfected using ozonated water (2D=134.9 µm). On the other hand, the lowest mean dimensional change observed in polyether and addition silicone samples was those which were disinfected using UV radiation (3C=100.9 µm and 4C=113.5 µm). Surface detail was reproduced adequately in most of the samples. Conclusion A 0.2% peracetic acid could be used to disinfect zinc oxide eugenol impressions, ozonated water for alginate impressions, and UV radiation for polyether and addition silicone impressions.

2.
Environ Pollut ; : 123970, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636839

RESUMO

This study presents the synthesis of a novel composite catalyst, ZIF-67, doped on sodium bicarbonate-modified biochar derived from kumquat peels (ZIF-67@KSB3), for the enhanced activation of peracetic acid (PAA) in the degradation of acetaminophen (APAP) in aqueous solutions. The composite demonstrated a high degradation efficiency, achieving 94.3% elimination of APAP at an optimal condition of 200 mg L-1 catalyst dosage and 0.4 mM PAA concentration at pH 7. The degradation mechanism was elucidated, revealing that superoxide anion (O2•-) played a dominant role, while singlet oxygen (1O2) and alkoxyl radicals (R-O•) also contributed significantly. The degradation pathways of APAP were proposed based on LC-MS analyses and molecular electrostatic potential calculations, identifying three primary routes of transformation. Stability tests confirmed that the ZIF-67@KSB3 catalyst retained an 86% efficiency in APAP removal after five successive cycles, underscoring its durability and potential for application in pharmaceutical wastewater treatment.

3.
Water Res ; 256: 121595, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640561

RESUMO

Micropollutants and bacteria are prevalent pollutants in wastewater, posing significant risks to ecosystems and human health. As peracetic acid (PAA) is being increasingly used as a disinfectant, activation of PAA by low-cost and high-performance activators is a promising strategy for wastewater treatment. In this study, the sulfur-doped magnetic CoFe2O4 (SCFO) is successfully developed for efficient PAA activation to simultaneously decontaminate and disinfect wastewater. PAA/SCFO-0.3 exhibits exceptional performance, degrading 100 % of 8 µM sulfamethoxazole (SMX) with a first-pseudo reaction rate of 1.275 min-1, and achieving 5.3-log inactivation of Escherichia coli (E. coli) within 3 min at a PAA dosage of 0.2 mM and catalyst dosage of 0.025 g/L (initial pH 6.5). Scavenging experiments and electron paramagnetic resonance (EPR) analysis identify CH3C(O)O• and CH3C(O)OO• as the dominant reactive species for SMX degradation. The sulfur species in SCFO-0.3 facilitate Co2+ regeneration and regulate charge transfer, promoting PAA activation for SMX degradation. Moreover, the PAA/SCFO-0.3 system demonstrates operational feasibility over a broad range of water matrices and has excellent stability and reusability (maintaining 93 % removal of SMX after 5 cycles), demonstrating its potential for industrial applications. This study provides insights into enhancing PAA activation through sulfur doping in transition metal catalysts and highlights the practical applicability of the PAA/SCFO-0.3 system as an advanced alternative to conventional disinfection for simultaneous decontamination and disinfection in wastewater.

4.
Water Res ; 256: 121621, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642536

RESUMO

Peracetic acid (PAA) has emerged as a new effective oxidant for various contaminants degradation through advanced oxidation process (AOP). In this study, sulfidated nano zero-valent iron-copper (S-nZVIC) with low Cu doping and sulfidation was synthesized for PAA activation, resulting in more efficient degradation of sulfamethoxazole (SMX, 20 µM) and other contaminants using a low dose of catalyst (0.05 g/L) and oxidant (100 µM). The characterization results suggested that S-nZVIC presented a more uniform size and distribution with fewer metal oxides, as the agglomeration and oxidation were inhibited. More significantly, doped Cu0 and sulfidation significantly enhanced the generation and contribution of •OH but decreased that of R-O• in S-nZVIC/PAA/SMX system compared with that of nZVIC and S-nZVI, accounting for the relatively high degradation efficiency of 97.7% in S-nZVIC/PAA/SMX system compared with 85.7% and 78.9% in nZVIC/PAA/SMX and S-nZVI/PAA/SMX system, respectively. The mechanisms underlying these changes were that (i) doped Cu° could promote the regeneration of Fe(Ⅱ) for strengthened PAA activation through mediating Fe(Ⅱ)/Fe(Ⅲ) cycle by Cu(Ⅰ)/Cu(Ⅱ) cycle; (ii) S species might consume part of R-O•, resulting in a decreased contribution of R-O• in SMX degradation; (iii) sulfidation increased the electrical conductivity, thus facilitating the electron transfer from S-nZVIC to PAA. Consequently, the dominant reactive oxygen species transited from R-O• to •OH to degrade SMX more efficiently. The degradation pathways, intermediate products and toxicity were further analyzed through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS) and T.E.S.T software analysis, which proved the environmental friendliness of this process. In addition, S-nZVIC exhibited high stability, recyclability and degradation efficiency over a wide pH range (3.0∼9.0). This work provides a new insight into the rational design and modification of nano zero-valent metals for efficient wastewater treatment through adjusting the dominant reactive oxygen species (ROS) into the more active free radicals.

5.
Water Res ; 255: 121486, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564895

RESUMO

This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.

6.
Environ Sci Technol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634679

RESUMO

Peracetic acid (PAA) oxidation catalyzed by metal-free carbons is promising for advanced water decontamination. Nevertheless, developing reaction-oriented and high-performance carbocatalysts has been limited by the ambiguous understanding of the intrinsic relationship between carbon chemical/molecular structure and PAA transformation behavior. Herein, we comprehensively investigated the PAA activation using a family of well-defined sp2/sp3 carbon hybrids from annealed nanodiamonds (ANDs). The activity of ANDs displays a volcano-type trend, with respect to the sp2/sp3 ratio. Intriguingly, sp3-C-enriched AND exhibits the best catalytic activity for PAA activation and phenolic oxidation, which is different from persulfate chemistry in which the sp2 network normally outperforms sp3 hybridization. At the electron-rich sp2-C site, PAA undergoes a reduction reaction to generate a reactive complex (AND-PAA*) and induces an electron-transfer oxidation pathway. At the sp3-C site adjacent to C═O, PAA is oxidized to surface-confined OH* and O* successively, which ultimately evolves into singlet oxygen (1O2) as the primary reactive species. Benefiting from the dual nonradical regimes on sp2/sp3 hybrids, AND mediates a sustainable redox recycle with PAA to continuously generate reactive species to attack water contaminants, meanwhile maintaining structural/chemical integrity and exceptional reusability in cyclic runs.

7.
Orthopadie (Heidelb) ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498205

RESUMO

BACKGROUND: The use of allografts and autografts has been met with mixed views on whether allografts are a suitable alternative to autografts. QUESTION: We aimed to investigate if chemically sterilized allografts show similar rerupture rates to those reported in the literature for allografts and autografts in anterior (ACL) and posterior cruciate ligaments (PCL) and complex knee surgery. MATERIALS AND METHODS: Retrospective data on knee reconstructions performed between 2011 and 2015 with tendon/ligamnet allografts sterilized with peracetic acid were collected in the form of a questionnaire. The inclusion criteria of 2 years for each patient were met by 38 patients, representing 22 ACL reconstructions, 5 PCL reconstructions, 3 OTHER surgeries, including the Larson technique and medial patellofemoral ligament (MPFL) reconstruction and 8 COMPLEX surgeries. The main endpoints were rerupture and complication rate. Secondary endpoints included stability of the knee (Lachman test, Pivot shift test) and the range of motion. RESULTS: The rerupture rate was 7.9% (3 grafts). Reruptures only occurred in the ACL group. No reruptures were observed in the PCL, OTHER and COMPLEX surgery groups. Stability improved significantly after surgery and the range of motion returned to values similar to that of healthy knees. CONCLUSIONS: Tendon allografts sterilized with peracetic acid show promising low rerupture rates and good clinical scores and the results are comparable to the literature on autografts and other allografts.

8.
Chemosphere ; 354: 141684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494005

RESUMO

The presented research concerns the use of nickel cobaltite nanoparticles (NiCo2O4 NPs) for the heterogeneous activation of peracetic acid and application of NiCo2O4-PAA system for degradation 10 organic micropollutants from the group of bisphenols. The bisphenols removal (initial concentration 1 µM) process was optimized by selecting the appropriate process conditions. The optimal amount of catalyst (115 mg/L), peracetic acid (PAA) concentration (7 mM) and pH (7) were determined using response surface analysis in the Design of Experiment. Then, NiCo2O4 NPs were used to check the possibility of reuse in subsequent oxidation cycles. The work also attempts to explain the mechanism of oxidation of the studied micropollutants. The participation of the sorption process on the catalyst was excluded and based on the experiments with radical scavengers it can be concluded that the oxidation proceeds in a radical pathway, mainly with participation of O2•- radicals. Experiments conducted in real water matrices exhibit low impact on degradation efficiency. Toxicity tests with green alga Acutodesmus obliquus and aquatic plant Lemna minor showed that post-reaction mixture influenced growth and the content of photosynthetic pigments in concentration dependent manner.


Assuntos
Araceae , Compostos Benzidrílicos , Minerais , Oxidantes , Fenóis , Poluentes Químicos da Água , Ácido Peracético , Peróxido de Hidrogênio , Níquel , Oxirredução
9.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
10.
J Hazard Mater ; 470: 134166, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554511

RESUMO

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Assuntos
Antibacterianos , Ácido Peracético , Raios Ultravioleta , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Peracético/farmacologia , Tetraciclina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/efeitos dos fármacos , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos da radiação , Desinfecção/métodos , Biodegradação Ambiental
11.
J Hazard Mater ; 470: 134139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555674

RESUMO

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Assuntos
Biomassa , Carvão Vegetal , Ferro , Ácido Peracético , Poluentes Químicos da Água , Purificação da Água , Ácido Peracético/química , Carvão Vegetal/química , Ferro/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Nitrogênio/química , Naproxeno/química , Catálise , Descontaminação/métodos , Adsorção
12.
Microorganisms ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543586

RESUMO

Three lipid-enveloped viruses (bovine viral diarrhea virus [BVDV], vaccinia virus, and severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) were evaluated in side-by-side liquid inactivation efficacy studies of low pH (3.0 to 3.1) treatment and of the non-formulated microbicidal actives sodium hypochlorite (100 ppm), ethanol (70%), quaternary ammonium compound BTC® 835 (100 ppm), and peracetic acid (100 ppm). Low pH was evaluated at 10 and 60 min contact times, and the microbicides were evaluated at 1 min contact time at room temperature per the ASTM E1052 standard. In each case, 5% animal serum was included in the viral inoculum as a challenge soil load. The three viruses displayed similar susceptibility to sodium hypochlorite and ethanol, with complete inactivation resulting. Significant differences in susceptibility to BTC® 835 and peracetic acid were identified, with the ordering of the three viruses for susceptibility to BTC® 835 being SARS-CoV-2 > vaccinia virus = BVDV, and the ordering for peracetic acid being vaccinia virus > SARS-CoV-2 > BVDV. The ordering for susceptibility to low pH treatment (60 min contact time) was vaccinia virus > SARS-CoV-2 > BVDV. Not all enveloped viruses display equivalent susceptibilities to inactivation approaches. For the chemistries evaluated here, BVDV appears to represent a worst-case enveloped virus.

13.
Front Microbiol ; 15: 1348159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476936

RESUMO

Introduction: Targeted amplicon sequencing of the 16S rRNA delineates the complex microbial interactions that occur during food spoilage, providing a tool to intensively screen microbiota response to antimicrobial processing aids and interventions. The current research determines the microbiota and spoilage indicator (total aerobes and lactic acid bacteria; LAB) response to inorganic and organic antimicrobial intervention use on the shelf-life of fresh, never-frozen, skin-on, bone-in chicken wings. Methods: Wings (n=200) were sourced from local processor and either not treated (NT) or treated with 15-s dips of tap water (TW), organic (peracetic acid; PAA), inorganic acids (sodium bisulfate; SBS), and their combination (SBS + PAA). Wings were stored (4°C) and rinsed in neutralizing Buffered Peptone Water (BPW) for 1 min on d 0, 7, 14, and 21 post-treatment. Spoilage indicators, aerobic mesophiles and LAB, were quantified from rinsates. Genomic DNA of d 14 and 21 rinsates were extracted, and V4 of 16S rRNA gene was sequenced. Sequences were analyzed using QIIME2.2019.7. APC and LAB counts were reported as Log10 CFU/g of chicken and analyzed in R Studio as a General Linear Model using ANOVA. Pairwise differences were determined using Tukey's HSD (P£0.05). Results: Spoilage was indicated for all products by day 21 according to APC counts (>7 Log10 CFU/g); however, wings treated with SBS and SBS + PAA demonstrated a 7-day extended shelf-life compared to those treated with NT, TW, or PAA. The interaction of treatment and time impacted the microbial diversity and composition (p < 0.05), with those treated with SBS having a lower richness and evenness compared to those treated with the controls (NT and TW; p < 0.05, Q < 0.05). On d 14, those treated with SBS and SBS + PAA had lower relative abundance of typical spoilage population while having a greater relative abundance of Bacillus spp. (~70 and 50% of population; ANCOM p < 0.05). By d 21, the Bacillus spp. populations decreased below 10% of the population among those treated with SBS and SBS + PAA. Discussion: Therefore, there are differential effects on the microbial community depending on the chemical intervention used with organic and inorganic acids, impacting the microbial ecology differently.

14.
J Hazard Mater ; 467: 133638, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354441

RESUMO

Peracetic acid (PAA) emerges as a promising disinfectant and oxidant applied worldwide, and its application has been broadened for advanced oxidation processes (AOPs) in wastewater treatment. Current studies on transition metal-activated AOPs utilized relatively high concentrations of catalysts, leading to potential secondary pollution concerns. This study boosts the understanding of reaction mechanism in PAA activation system under a low-level concentration. Herein, trace levels of Co(II) (1 µM) and practical dosages of PAA (50-250 µM) were employed, achieving noticeable ciprofloxacin (CIP) degradation efficiencies (75.8-99.0%) within 20 min. Two orders of magnitude of the CIP's antibacterial activity significantly decreased after Co(II)/PAA AOP treatment, which suggested the effective ecological risk control capability of the reaction system. The degradation performed well in various water matrices and the primary reactive species is proposed to be CoHPO4-OO(O)CCH3 complexes with scavenging tests and electron paramagnetic resonance tests. The degradation pathway of fluoroquinolones including piperazine ring-opening (dealkylation and oxidation), defluorination, and decarboxylation, were systematically elucidated. This study boosts a comprehensive and novel understanding of PAA-based AOP for CIP degradation.


Assuntos
Ciprofloxacina , Ácido Peracético , Oxidantes , Fosfatos , Estresse Oxidativo
15.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396546

RESUMO

Salmonella remains a top bacterial pathogen implicated in several food-borne outbreaks, despite the use of antimicrobials and sanitizers during production and processing. While these chemicals have been effective, Salmonella has shown the ability to survive and persist in poultry processing environments. This can be credited to its microbial ability to adapt and develop/acquire tolerance and/or resistance to different antimicrobial agents including oxidizers, acids (organic and inorganic), phenols, and surfactants. Moreover, there are several factors in processing environments that can limit the efficacy of these antimicrobials, thus allowing survival and persistence. This mini-review examines the antimicrobial activity of common disinfectants/sanitizers used in poultry processing environments and the ability of Salmonella to respond with innate or acquired tolerance and survive exposure to persists in such environments. Instead of relying on a single antimicrobial agent, the right combination of different disinfectants needs to be developed to target multiple pathways within Salmonella.

16.
Front Microbiol ; 15: 1356538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333588

RESUMO

Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs.

17.
Environ Sci Technol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315813

RESUMO

Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have shown broad application prospects in organic wastewater treatment. Alkoxy radicals including CH3COO• and CH3COOO• are primary reactive species in PAA-AOP systems; however, their reaction mechanism on attacking organic pollutants still remains controversial. In this study, a Co(II)/PAA homogeneous AOP system at neutral pH was constructed to generate these two alkoxy radicals, and their different reaction mechanisms with a typical emerging contaminant (sulfacetamide) were explored. Dynamic electron distribution analysis was applied to deeply reveal the radical-meditated reaction mechanism based on molecular orbital analysis. Results indicate that hydrogen atom abstraction is the most favorable route for both CH3COO• and CH3COOO• attacking sulfacetamide. However, both radicals cannot react with sulfacetamide via the radical adduct formation route. Interestingly, the single-electron transfer reaction is only favorable for CH3COO• due to its lower ESUMO. In comparison, CH3COOO• can react with sulfacetamide via a similar radical self-sacrificing bimolecular nucleophilic substitution (SN2) route owing to its high ESOMO and easy escape of unpaired electrons from n orbitals of O atoms in the peroxy bond. These findings can significantly improve the knowledge of reactivity of CH3COO• and CH3COOO• on attacking organic pollutants at the molecular orbital level.

18.
PNAS Nexus ; 3(2): pgae040, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38328784

RESUMO

Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.

19.
Environ Sci Technol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359405

RESUMO

Cu(II)-catalyzed peracetic acid (PAA) processes have shown significant potential to remove contaminants in water treatment. Nevertheless, the role of coexistent H2O2 in the transformation from Cu(II) to Cu(I) remained contentious. Herein, with the Cu(II)/PAA process as an example, the respective roles of PAA and H2O2 on the Cu(II)/Cu(I) cycling were comprehensively investigated over the pH range of 7.0-10.5. Contrary to previous studies, it was surprisingly found that the coexistent deprotonated H2O2 (HO2-), instead of PAA, was crucial for accelerating the transformation from Cu(II) to Cu(I) (kHO2-/Cu(II) = (0.17-1) × 106 M-1 s-1, kPAA/Cu(II) < 2.33 ± 0.3 M-1 s-1). Subsequently, the formed Cu(I) preferentially reacted with PAA (kPAA/Cu(I) = (5.84 ± 0.17) × 102 M-1 s-1), rather than H2O2 (kH2O2/Cu(I) = (5.00 ± 0.2) × 101 M-1 s-1), generating reactive species to oxidize organic contaminants. With naproxen as the target pollutant, the proposed synergistic role of H2O2 and PAA was found to be highly dependent on the solution pH with weakly alkaline conditions being more conducive to naproxen degradation. Overall, this study systematically investigated the overlooked but crucial role of coexistent H2O2 in the Cu(II)/PAA process, which might provide valuable insights for better understanding the underlying mechanism in Cu-catalyzed PAA processes.

20.
J Hosp Infect ; 146: 37-43, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224856

RESUMO

INTRODUCTION: Immunocompromised patients are at an increased risk of severe legionella infections. We present the results of an outbreak investigation initiated following a fatal case of hospital-acquired legionellosis linked to contaminated water from a toilet-flushing cistern. Additionally, we provide experimental data on the growth of Legionella spp. in flushing cisterns and propose a straightforward protocol for prevention. METHODS: We monitored the growth of Legionella spp. in the building's hot- and cold-water systems using quantitative bacterial culture on selective agar. Molecular typing of Legionella pneumophila isolates from the infected patient and the water system was conducted through core-genome multi-locus sequence typing (cgMLST). RESULTS: Legionella contamination in the hospital building's cold-water system was significantly higher than in the hot-water system and significantly higher in toilet flushing cistern's water compared with cold water from bathroom sinks and showers. Isolates from the patient and from the flushing cistern of the patient's bathroom were identical by cgMLST. In an experimental setting, daily toilet flushing for a period of 21 days resulted in a 67% reduction in the growth of Legionella spp. in the water of toilet flushing cisterns. Moreover, a one-time disinfection of cisterns with peracetic acid, followed by daily flushing, decreased legionella growth to less than 1% over a period of at least seven weeks in these setting. CONCLUSIONS: One-time disinfection of highly contaminated cisterns with peracetic acid and daily toilet flushing as short-term measure can significantly reduce legionella contamination in flushing cisterns. These measures may aid in preventing legionella infection among immunocompromised patients.


Assuntos
Aparelho Sanitário , Legionella pneumophila , Legionella , Legionelose , Humanos , Ácido Peracético , Tipagem de Sequências Multilocus , Microbiologia da Água , Legionelose/prevenção & controle , Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...